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Known formulas for variational bounds on Darcy’s constant for slow flow through porous 
media depend on two-point and three-point spatial correlation functions. Certain bounds due 
to Prager and Doi depending only a two-point correlation functions have been calculafed for 
the first time for random aggregates of spheres with packing fractions (t/I) up to q = 0.64. 
Three radial distribution functions for hard spheres were tested for r) up to 0.49: (I) the 
uniform distribution or “well-stirred approximation.” (2) the Percus-Yevick approximation. 
and (3) the semi-empirical distribution of Verlet and Weis. The empirical radial distribution 
functions of Bennett and Finney were used for packing fractions near the random-close- 
packing limit (qRCP Q 0.64). An accurate multidimensional Monte Carlo integration method 
(VEGAS) developed by Lepage was used to compute the required two-point correlation 
functions. The results show that Doi’s bounds are preferred for q < 0.10 while Prager’s 
bounds are preferred for 9 > 0.10. The “upper bounds” computed using the well-stirred 
approximation actually become negative (which is physically impossible) as q increases, 
indicating the very limited value of this approximation. The other two choices of radial 
distribution function give reasonable results for q up to 0.49. However. these bounds do not 
decrease with q as fast as expected for large r/. It is concluded that variational bounds 
dependent on three-point correlation functions are required to obtain more accurate bounds on 
Darcy’s constant for large 1. 

1. INTRODUCTION 

When gravitational effects are neglected, Darcy’s law [ 1 ] for slow flow through 
porous media states that the average discharge per unit of cross-sectional area normal 
to the direction of flow (Q in units of velocity) is proportional to the negative 
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gradient of pressure and inversely proportional to the shear viscosity of the fluid @), 
i.e., 

Q+? 

The proportionality constant k is known as Darcy’s constant or alternatively as the 
fluid permeability of the porous medium. The permeability is a complicated function 
of the statistical geometry for random porous materials. In certain idealized cases 
with either periodic [2] or random [3-51 arrays of spheres at very small concen- 
trations of solid particles, asymptotic expansions for the permeability as a function of 
packing fraction (volume concentration) q are available. Only recently have methods 
been developed to calculate k for periodic arrays of spheres at large values of q 
[6,7]. 

In most cases of practical interest, useful theoretical estimates of the permeability 
are not yet available so empirical formulas (based on dimensional analysis) such as 
the Kozeny-Carman equations are used [8]. General variational bounds have been 
developed by Prager [9] and Doi [IO]. However, these formulas involve two-point or 
three-point spatial correlation functions which are not generally known for real 
porous materials. Therefore, these bounds have only been evaluated for artificial 
models or for limiting cases of small concentrations of spherical particles. 

The purpose of the present paper is to develop the numerical methods required to 
evaluate these formulas for random aggregates of spherical particles for packing 
fractions up to and including the theoretical maximum at random close packing 
(rl RCP - 0.64.). The major difficulty with this enterprise is the calculation of the two- 
point and three-point correlation functions which appear in the formulas. We restrict 
discussion to those variational bounds depending only on two-point correlation 
functions since these functions can now be calculated with an accuracy of a few 
percent for random aggregates of spheres. These calculations were made possible 
partially by the extensive published literature on radial distribution functions for 
hard-sphere fluids [I l-131, partially by the recent development of an accurate 
multidimensional, adaptive Monte Carlo integration method which works well even 
for poorly behaved integrands such as the pair distribution function [ 141, and 
partially by the techniques developed in the present work. 

In Section 2, the upper bounds on permeability are presented and the numerical 
problem to be solved is formulated. An analytical example using the well-stirred 
approximation to the radial distribution function is presented in Section 3. This 
analytical example is interesting in its own right but it also plays two essential roles 
in the subsequent analysis: (1) The example provides a nontrivial check on the Monte 
Carlo integration routine. (2) These results also serve as a leading contribution to the 
more realistic calculations in Section 4. Two approximations to the radial distribution 
function are treated in Section 4. Exact analytical results are known [ 15, 161 for the 
Percus-Yevick approximation to the hard-sphere radial distribution function, so this 
approximation is fairly convenient. The semi-empirical formulas of Verlet and Weis 
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[ 111 for the radial distribution function agree (+3 %) with Monte Carlo results on 
hard spheres up to packing fractions of about 0.49 and are not much more difficult to 
implement numerically than the Percus-Yevick approximation [ 17 ]. Section 4 also 
summarizes the results for the bounds on permeability obtained using these two 
approximations and compares the results to empirical formulas and exact results on 
other related systems of particles. 

2. BOUNDS ON PERMEABILITY 

Prager [9] and Doi [IO] have presented variational methods which lead to upper 
bounds on the permeability of general porous media if certain spatial correlation 
functions are known. Doi’s paper contains one bound on permeability which depends 
on three distinct two-point correlation functions. Prager’s paper contains several 
formulas, some of which depend on three-point correlation functions. Since the three- 
point correlation functions cannot yet be calculated as accurately as ,the two-point 
correlation functions for any model material, our discussion will be restricted to 
formulas depending only on two-point correlation functions. 

Using Doi’s notation, the bounds to be considered are Prager’s simplified upper 
bound 

and Doi’s upper bound 

In Eqs. (2) and (3), d is the porosity (void space per unit volume) and s is the specific 
surface area (pore surface area per unit volume). The correlation functions are 
defined in terms of a function f(r) which takes the value unity in the void and the 
value zero in the solid. Then the correlation functions are defined by the equations 

F,“(r) = (f(r) J-6 + 5)) (4) 

F,,(C) = (I ?f(r)l f(r + t)) (5) 

MS) = (I V.(r)l IVf(r + C)l) (6) 

where the brackets indicate a volume average over the spatial coordinate r. These 
functions are called void-void, surface-void, and surface-surface correlation 
functions. For the macroscopically isotropic materials considered here, all three 
functions depend only on [ = ]c]. As [-+ co, these functions have the limiting forms 

F”“(C) -+ 9*1 F,“(C) + 6 F,,(C) + s2. (7) 
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As <- 0, Prager notes that 

So far these formulas are completely general and could be applied to any 
macroscopically isotropic porous material for which the correlation functions were 
known. For particular porous materials, these correlation functions can be measured 
by careful examination of photographs of cross sections of the material ( 181. Lacking 
this information, we choose to study a random aggregate of hard spheres with 
uniform radii. This model is convenient because a vast literature exists on the 
statistical properties of the hard sphere model of fluids [ 191 and also because such a 
model can readily be built in the laboratory [ 13,201. 

For any particular configuration of spheres (each with diameter a), the function 
f(r) can be written (following Doi) as 

f(r) = h(r; R) = n 19([ r - rn 1 - R) 
n 

(9) 

where 

e(x) = 1 x>o 

=o x<o 
(‘0) 

and r,, denotes the center of the nth sphere and R = a/2. Then it follows from (9) that 

Defining 

we find that 

H(C; X,Y) = (4~ x) W + 5; .Y)), 

and 

(11) 

(12) 

(13) 

(14) 

Thus, all three two-point correlation functions are completely determined by the 
generating function H(t& x, y). 
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The general form of the generating function (12) can be found by slightly 
modifying an argument used by Weissberg and Prager [ 2 11 to evaluate H(<; R. R). 
Let p be the number of spheres per unit volume and q = 7ra’p/6 = 1 - 4 be the 
packing fraction. Define the radial (pair) distribution function g(r) so that. if a 
particle is located at the origin, the expected number of particle centers to be found in 
the spherical shell between r and r + dr is 4nr’pg(r) dr. Now H(<: x, y) is the 
probability that two points of the porous medium r and r + c both lie in regions such 
that no particle center lies within a radius x of point r or within a radius J of point 
r + r. Define fi, and 52,. to be these spherical regions surrounding points r and r + <, 
respectively, and define B to be the total region R = Q, U R,.. If we restrict x and J 
so that x,y < R, then f2 can be occupied by zero, one, or at most two particle centers. 
In the isotropic case, the probability that R is empty takes the form 

H([;x,J~) = 1 - Vn([; x,~) + +p2 1: ji g(Jr’ - r”J) d3r’ d’r”. (16) 

The volume of the region R is V,([; x, y) and is given by 

V& x, 4’) = F x3 for x > 4 

r< lx-p1 
4n =-, 
3 43 

for ~1 > x 

=x(x +JJ + C)’ 
[ 

(x 9)’ 41; +’ K+J’-i’ 6 (. 2 )I I-K-J1 < c<x+.l 

Equation (16) can be simplified slightly. Since the radial distribution function 
vanishes for Ir - r’l < u and since we have restricted x and JJ to be less than or equal 
to R = o/2, we see that 

1 . ^ 

L R I 1 
g(lr’ - ml) d3rr d3r” = * . 

J J, 
n, R ,g(lr’ - r”l) d3r’ djr”. (18) 

Combining (16)-( 18) and substituting into (13)-( 15), we find first that the 
void-void correlation function is given by 

F,,K) = 1 - PV,G R, RI + P*L(C) (19) 



FLOW THROUGH AGGREGATES OF SPHERES 147 

where 

“,([;R,R)=FR’ [1+$(1-y&F)] 6-<2R (20) 

8n =- 
3 R3 

[>2R 

and 

Z,,(C) = jQ I, g(l r; + r” - t’ 1) d+f d+ff. (21) R R 
The region QR is a spherical region of radius R centered at the origin. We have used 
the isotropy of g in reducing (18) to (21). Similarly, the surface-void correlation 
function is 

F 
S” 

([) = p aV,G X34’) 

8X 
- P2MC) (22) 

XE,‘Y/( 

where 

aV,(c; &Y) 
ax 

= 27rR*(l + [/2R) 4<2R 
.yZ,!ZR (23) 

= 4xR* [> 2R 

and 

z,,(c) = R* jsR jnR g(1 g + ~;(e”, 4”) - rr I) d-if sin 0” de” d#” 

and furthermore the surface-surface correlation function is 

(24) 

where CW, 2nR’ -- 
axay x=y=R = c 

0<<<2R 
(26) 

=o (I> 2R 

and 

Z,,(C) = R4 j;, js, g(lG + We”, V) - We’, $‘)I 
x sin 8’ de’ df sin 8” dB” d$“. (27) 
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In Eqs. (24) and (27), S, is the surface of the sphere of radius R centered at the 
origin. 

To check that the limiting forms of (19), (22), and (25) are correct as [- co, note 
that 

(28) 

F,,(C) + 0 + (471R’)’ p2 = s’ (30) 

since g + 1 as [- co, d = 1 - q, and s = 4nR’p. Equation (19) is the same as Eq. (6) 
of Weissberg and Prager [21] except for an apparent typographical error in [2 11. 
Furthermore, Eq. (19) also yields (8) as [ + 0 after some tedious manipulations 
which will not be reproduced here. 

The final computation of the bounds (2) and (3) now reduces to the numerical 
problem of evaluating the multidimensional integrals appearing in (2 l), (24), and 
(27). Even for the simplest non-trivial choice of radial distribution function. these 
integrals are quite tedious to evaluate. Section 3 presents an analytical example using 
the well-stirred approximation. Section 4 presents more realistic calculations based on 
radial distribution functions valid for higher packing fractions. Such calculations 
necessarily require Monte Carlo integration. 

3. ANALYTICAL EXAMPLE: WELL-STIRRED APPROXIMATION 

The simplest non-trivial approximation to the hard-sphere radial distribution 
function is based on the assumption that, except for the hard-sphere excluded volume. 
particle locations are uncorrelated. The corresponding radial distribution function is 

&s(r) = 0 for r<u 

= 1 for r > 0. 
(31) 

This approximation to g(r) is sometimes known as the well-stirred approximation 
[22]. This approximation becomes exact for all r as the number density p -+ 0. It is 
also a good approximation to g(r) for all p as r-+ co. It is nevertheless a very 
unrealistic radial distribution function as we will soon show. However, by using (31), 
we can evaluate (21), (24), and (27) analytically. This calculation serves three 
important functions: (1) It provides insight into the difficulties inherent in evaluating 
these multidimensional integrals. (2) It provides exact results which can be used to 
check the accuracy of our Monte Carlo integration routine. (3) The resulting 
formulas often aid us in reducing the number of iterations required by our Monte 
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Carlo integrations while still achieving the desired degree of accuracy. Since the 
integrals are linear in g(r) and since we can write in general 

g(r) = lLv&) + 47(r) (32) 

where dg vanishes identically for r < u and is negligible for large r (>50), a 
significant contribution to the correlation functions for [ comes from (3 1). In general, 
the integrals of interest have the form 

a) = L,(r) + a) (33) 

where M/l,, is often (but not always) quite small. 
To calculate (21), we will first write down a transformed version of the integral 

and then motivate the transformations. First, the integral is rewritten as 

z~v(C)= (+R3)2 -lf (1 -gwS)d3r’d3rrr (34) 

which can then be evaluated as 

I,,([)= (~R3)2-+j~:(iiR*3R’drr[R2-(r-[)2]d,,(r) 

and 
for (>2R (35) 

* -!$R3 (R -+)’ (2R +$) 

-&[--54R4(R2-[*)r+ (72R3(R2-c*)-54R2[)rZ 

- 2R2(R2 - lO[* - 48RC) r3 

-6R2(5[+6R)r4+f(31R2-i2)r5 

i- fjr6- fr’ 1 
b+.Q 

for 0<[<2R. 
R 

(36) 

In (35), the function d,,(r) is given by 

d,,(r) = T R3 O<r<R 

(37) 

= + [h:(3R - h,) + h:(6R - A,)] R<r<3R 

= 0 3R < r 
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4R2 - (R - r)’ 
h,(r) = 2r 9 

R* - (2R - r)’ 
h*(r) = 2r . (38) 

These formulas are obtained through the arguments which follow. However, before 
starting this discussion, note that the limiting cases of the integral are I,, + 0 as &+ 0 
and I,, + [(47r/3) R3]* as [ + 4R. Also, the significance of (37) and (38) will become 
clear in our subsequent discussion if we recall that the volume of a spherical segment 
of height h for a sphere of radius R, is (n/3) h2(3R, - h). 

We first consider the case [ > 2R. If we make a change of variables from r”. 0” to 
r, 13 as shown in Fig. 1, we find that the relevant overlapping volume (shaded in the 
figure) depends on r but is independent of 0 and $“. The volume of this overlap 
region is the sum of two spherical segments for spheres of radii R and 2R whose 
centers are a distance r apart. This volume is given by d,.,.(r) in (37). The Jacobian of 
the transformation is r/r”. Integrating with respect to 19 from 0 = 0 to B = B,,, (at the 
surface of the sphere) gives a factor 

(I - cos em,,) = R * -f- c)2 . (39) 

Integrating with respect to 4” gives an additional factor of 271 which when combined 
with (39) finally gives (35). 

Next consider the case [ < 2R. The same change of variables used in the preceding 
paragraph is still useful, but only for R < r < < + R. For r < R, r lies in the region of 
volume 

(401 

- 
z 

FIG. 1. Illustration of the geometry used in evaluating integrals (Zl), (24), and (27) when i> 2R. 
The shaded region of overlap has the volume given in Eq. (37). The surface area of this shaded region is 

given in Eq. (43). 
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where the two spheres of radius R overlap (shaded region of Fig. 2). For every point 
in this volume, the entire volume of the sphere at the origin lies within the sphere of 
radius 2R. So (40) is multiplied by 47rR’/3 to obtain the second contribution to (36). 
The bracketed polynomial constituting the final term in (36) is obtained by replacing 
the limits of integration in (35) [ i.e., [ - R and min(< + R, 3R)] by those appropriate 
for the case 0 < 6 < 2R (i.e., R and [ + R) and then integrating. This concludes the 
derivation of (35)-(38). 

Arguments along similar lines show that the surface-void integral (24) is 

and 

Z,,(C) = F RS -FR* (R -+)* (2R ++) 

-fR 3R2(R2-[2)r+R(R’+3R<-[2)r2 
[ 

+f([2+4R[-4R2)r3-~(R+~)r’+~r5 
I 

S+R 

R 

where 

d,,(r) = 47cR * O<r<R 

= 2xRh,(r) R<r<3R 

=o 3R < r 

for [>2R (41) 

(42) 

for [ < 2R 

(43) 

FIG. 2. Illustration of the geometry used in evaluating integrals (21). (24). and (27) when c ( 2R. 
The shaded region of overlap has the volume given in Eq. (40). 
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and h,(r) is given by (38). Similarly, the surface-surface integral (27) is given by 

2n=R2 min(S+R,3R) 

Z,,(r) = (47rR *)’ - ~ for 
c c dr[4R’ - (R - r)‘] 2R < < < 4R (44) 

-C-R 

and 

Z,,([) = (47rR 2)2 - 87r*R 3 (R - i) 

2n2R2 -~ 
c 

3R2r+Rr’-tr’ 
I 

SiR 
for < ( 2R. (45) 

R 

Even in this relatively simple case, we see that the required manipulations are quite 
tedious. When more realistic radial distribution functions are used, numerical 
methods are necessarily required. Furthermore, since the domain of integration is so 
complex and since the integrand is so poorly behaved (vanishing identically for 
]r’ -r”] > 2R), it follows that an accurate, adaptive multidimensional Monte Carlo 
integration scheme is needed. The method which we have used with success is the 
routine VEGAS by Lepage [ 141. This routine uses importance sampling to alter the 
grid and also possesses a natural estimate of the accuracy of the final result based on 
the variance per iteration. Both of these characteristics are essential in the present 
application. 

To check the accuracy of the Monte Carlo integration routine (and incidentally to 
check our arithmetic in the analytical solution), we have calculated the integrals I, ,, . 
I,,, and I,, numerically using VEGAS. The maximum number of iterations was set 
equal to 10. The other parameters in VEGAS (see Lepage [ 141) are N = 50 (storage 
locations) and a = 1.5 (exponent for damping the subdivision algorithm). Iterations 
were terminated prior to the 10th iteration if the estimated variance was less than 
2 %. Two cases were run. The number of function evaluations per iteration was less 
than 3000 in the first case and less than 8200 in the second case. (VEGAS chooses 
the precise number of function evaluations depending on the allowed maximum.) 

The results for u = 2R = 1 are presented in Table I. In the columns labelled 
“VEGAS,” the first number for given c/a is the result for less than 3000 function 
evaluations and the second number for less than 8200 function evaluations. Numbers 
in parentheses are results after 10 iterations for which the algorithm’s estimated 
accuracy failed to achieve the requested value of 2%. The actual number of total 
iterations required depended on both [ and the particular integral being evaluated. In 
the first case, the successful integration of Z,,(c) required a maximum of six iterations 
for c/o = 0.1 and two iterations or less for [/a > 0.4. In the second case, the number 
of iterations for a successful integration was generally two or three times smaller for 
the smaller values of [ while two iterations or less were required for c/a > 0.4. 
Clearly, the algorithm has no chance to adapt if the integration terminates after only 
one iteration. 
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TABLE I 

Comparison of the Exact and Monte Carlo (VEGAS) Results for Integrals (21) (24). and (27) 
Evaluated Using the Well-Stirred Approximation (3 1) for the Radial Distribution Function 

I”,(C) r,“(c) I,,(C) 

CIJ EXACT VEGAS EXACT VEGAS EXACT VEGAS 

0.10 3.866E-04 

0.20 2.896E-03 

0.40 2.003E-02 

0.60 5.721E-02 

0.80 I.1 15E-01 

1.00 1.723E-01 

1.20 2.235E-01 

I .40 2.554E-01 

1.60 2.699E-0 I 

1.80 2.739E-01 

2.00 2.742E-01 

(2.373E-04) 
(3.527E-04) 
(2.477E-03) 
2.742E-03 
1.990E-02 
1.894E-02 
5.722E-02 
5.701E-02 
l.l21E-01 
l.l18E-01 
1.726E-01 
1.734E-01 
2.250E-01 
2.234E-01 
2.568E-G01 
2.529E-0 1 
2.703E-01 
2.726E-01 
2.71 lE-01 
2.756E-01 
2.752E-01 
2.721E-01 

1.602E-02 

6.224E-02 

2.327E-01 

4.820E-01 

7.748E-01 

l.O69E+OO 

1.305E+OO 

1.4968+00 

1.598E+OO 

1.6398+00 

1.645E+OO 

(1.333E-0.3) 
1.412E-02 
5.507E-02 
6.105E-02 
2.292E-01 
2.319E-01 
4.812E-01 
4.806E-0 I 
7.567E-01 
7.683E-01 
l.O79E+OO 
l.O50E+OO 
1.395E+OO 
1.3 18E+OO 
1.507E+OO 
1.504E+OO 
1.603E+OO 
1.586EtOO 
1.617EtOO 
1.628E+OO 
1.647E+OO 
1.629E+OO 

5.099E-0 I 

1.053E+OO 

2.237E+OO 

3.553E+OO 

5.OOlE+OO 

6.580E-W 

7.940E+OO 

8.854EtOO 

9.442E+OO 

9.767EtOO 

9.870EtOO 

5.025E-o01 
4.987E-01 
1.041EtOO 
l.O37E+OO 
2.263E+OO 
2.270E+OO 
3.5248+00 
3.509E+OO 
5.003E+OO 
5.062EtOO 
6.5 11 E+OO 
6.601E+OO 
7.998EtOO 
7.935EtOO 
8.933E+OO 
8.877E+OO 
9.576E+OO 
9.430E+OO 
9.715EtOO 
9.765EfOO 
9.882EtOO 
9.849EtOO 

No&. The two values listed under VEGAS for each choice of [ are results for different maximum 
numbers of function evaluations per iteration: the first value has less than 3000 evaluations per iteration 
and the second had less than 8200. The maximum number of iterations was 10 and the specified 
accuracy for a successful integration was 2%. Values in parentheses are final values obtained after IO 
iterations when the 2% accuracy criterion was not satisfied. 

One interesting detail of the application of this Monte Carlo technique concerns 
the choice of dimension for the actual integration. First note the azimuthal symmetry 
of Figs. 1 and 2. It follows that the dimension of each of the three integrals (21), 
(24), and (27) can be reduced by one since the integrand clearly depends only on the 
difference (4” - 4’) and not on d’, 4” separately. This reduction in dimension was 
incorporated into an early version of the code. However, it was found that the 
presence of this additional (redundant) dimension actually helped to improve the 
results, presumably by increasing the uniformity of the distribution of points picked 
by the pseudo-random number generator. The results presented in this paper were 
generated with VEGAS ignoring the azimuthal symmetry. 

We conclude from these results that VEGAS works adequately for the present 
application. We also conclude that it is advantageous to use a larger number of 
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TABLE II 

Computed Drag Coefficients (46) for Prager’s Bound (C,) and 
Doi’s Bound (C,) Using the Well-Stirred Approximation for g(r) 

Well-stirred approximation 

rl CD Cl, 

0.000125 0.618 I .ooo 
0.0010 0.62 I 1.001 
0.06 0.866 1.076 
0.13 1.448 1.263 
0.19 4.414 1.683 
0.25 2.912 
0.32 2 I.495 
0.38 

Note. Dashes indicate values of packing fraction (q) for which the computed “upper bounds” on 
permeability become negative-indicating the unrealistic nature of the chosen approximation to the 
radial distribution function. Note that the limiting value of C, as q--t 0 is C, = 50/81 = 0.6173. 

function evaluations per iteration for small values of c/a and a smaller number of 
evaluations for larger values of [/a. This philosophy has been employed successfully 
in the more realistic cases discussed in the next section. 

Before concluding this section, we wish to present the bounds on permeability 
computed using the well-stirred approximation. The results appear in Table II. Except 
for the first two values of packing fraction, the points chosen are tenths of the 
random-close-packed density for hard spheres qRCP 2 0.64 [ 13, 20. 231. The numbers 
quoted are the drag coefftcients defined by 

C, = ks lb Co = kslk, 

where 

k,‘&npR= 9rl 
2RZ (47) 

is the exact result for Stokes flow through a very dilute assemblage of spheres 
(q < l), each sphere having radius R. Note that, since k, and k, are upper bounds on 
permeability, C, and C, are lower bounds on the true drag coefficient. Dashes occur 
in Table II at points where the computed “upper bounds” k, or k, actually become 
negative. This absurd behavior is typical of results computed using unrealistic radial 
distribution functions and should not be construed as indicating a failure of the 
variational methods. These results demonstrate the necessity of using accurate values 
for g(r) when computing bounds and, therefore, provide an additional motivation for 
the work discussed in Section 4. 



FLOWTHROUGH AGGREGATES OF SPHERES 155 

4. NUMERICAL RESULTS FOR LARGE PACKING FRACTIONS 

In this section, we discuss the numerical methods used and the results obtained for 
two models of the hard-sphere radial distribution function. These two models are: (1) 
the Percus-Yevick (PY) approximation to the hard-sphere g(r) as computed using the 
exact solution given by Wertheim [ 151 and Thiele [ 161 and (2) the semi-empirical 
approximation to g(r) due to Verlet and Weis [ 111. The Verlet-Weis (VW) approx- 
imation is obtained by shifting g,,(r) so oscillations in gvw(r) at large r are in phase 
with results of computer experiments and then adding a short-range correction term 
near the core (r = o) so that g\,,(a) agrees with the Carnahan-Starling equation of 
state [24]. Verlet and Weis state that their radial distribution function differs from the 
“exact” one in the range 0.35 < q < 0.49 by at most 3% and the statistical error is 
estimated to be about 1%. A computer code for calculating g,,(r) for r up to r = 5a 
has also been published [ 17 1. 

A third possibility-that of using the Monte Carlo results directly in tabular 
form-was rejected on the grounds that the required Monte Carlo integration scheme 
already limits the accuracy of our results to about 2% (for reasonable total 
computing time). Thus, the extra effort involved is not warranted. 

The numerical method used was the same one described in the preceding section 
with the following modifications. We take advantage of the observation (32) that g(r) 
can be split into two parts. The first part is g,,(r) whose analytical contributions to 
the relevant integrals were calculated in Section 3. The remainder dg(r) vanishes for 
r < u, is negligible for r > 50, and is often quite small in the region u < r < 5~. The 
contribution AZ due to Ag must be computed using Monte Carlo integration; however, 
the relative error in Z is now ud,/(Zws + AZ) where I,, is known exactly and AZ/Z,, 
becomes quite small as [- 6~. (Both nontrivial models for g(r) approach g,,(r) as 
r + 5u so all three computed correlation functions reach their asymptotic values at 
[ = 6u.) The major errors in the Monte Carlo integrations occur for small [, but 
Eqs. (2) and (3) both contain a factor of [ in the integrand which helps to minimize 
the effects of these errors in our final results for the variational bounds. For large q, 
we have typically set the maximum number of function evaluations per iteration 
equal to 8200 [number of grid increments per axis in 6-D is N = (8200/2)“6 = 41 for 
small [ and reduced this number of 3000 [N= (1500)“6 = 31 for larger [, e.g., 
u<[<6u. 

Computations are conveniently limited to the range 0 < [ < 6u beyond which the 
correlation functions take on their asymptotic values (28)-(30). We found that 
dividing this interval into 60 equal subintervals and then computing the correlation 
functions at the 59 points of separation gave sufficiently good statistics for the final 
integrations in (2) and (3). For example, the final integrations are typically of the 
form 

AZ= 
I 
6dCW([)=0.01 z nF(0.h) (48) 

0 !‘=I 

using the trapezoidal rule to evaluate the integral and noting that F(6) = 0. Since 
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F(O.ln) is a random variable with variance un estimated by VEGAS, the final integral 
has an estimated variance of 

59 

a;, = x (O.Oln)’ cr; 5 7.2~;~~ (49) 
n=l 

with a probable error of 

These estimates place upper bounds on the error in the computed integrals of 
56% if u,,, is chosen to be 2%. However, these estimates are generally too 
pessimistic for two reasons: (1) The main contributions to the total variance Us, 
come from the un’s for large n, but these u,‘s are generally much smaller than urnax 
since these integrals are easier to compute. (2) These formulas give estimates for the 
variance in that part of the correlation function integral which must be computed 
using Monte Carlo methods. However, the complete correlation function contains 
substantial parts which are known analytically (see Section 3) so (49) and (50) are 
clearly too large. 

On the other hand, the contributions to the sum in (48) do not all have the same 
sign. In fact, the upper bounds tend to vanish as the packing fraction increases so it 

TABLE III 

Comparison of Drag coefficients for Prager’s Bound (C,) and Doi’s Bound (Co) 
Computed Using the Percus-Yevick Approximation and the Veret-Weiss 

Semi-empirical Formula for g(r) as the Packing Fraction (q) Varies 

rl 

Percus-Yevick Verlet-Weis 

CP CD CP CLI 

Kozeny-Carman 

C KC 

Brinkman 

C” 

0.000 125 0.623 I .ooo 

0.001 0.625 1 .ooo 

0.06 0.83 I .oo 

0.13 1.10 1.00 

0.19 1.47 1.01 

0.25 1.96 I .04 
0.32 2.59 1.09 
0.38 3.84 1.20 
0.45 4.42 1.27 
0.49 4.65 1.35 

0.64 

0.623 1.000 
0.625 1.000 
0.83 1.00 
I .09 1.00 
I .45 1.01 
1.95 I .03 
2.64 1.10 
3.72 1.20 
4.39 1.31 
4.58 1.37 

Finney 
7.42 

3.6 
6.2 

10.1 
16.2 
26.2 
36.9 

133 

1.024 
1.071 
1.9 
2.8 
4.0 
5.8 
8.7 

11.5 
23.9 
38.6 

Note. Also shown are results for the Kozeny-Carman relation (5 1) and Brinkman’s mean tield theory 
(52). The value for q = 0.64 was obtained using unpublished values of the radial distribution function for 
a laboratory packing of spheres, courtesy of J. L. Finney [ 13, 271. 
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becomes quite difficult to make a priori estimates of the accuracy of our results at 
high rl. This uncertainty can be resolved by numerical checks. 

For example, numerical tests done by computing the bounds for different values of 
VEGAS input parameters show that the results in Table III change by less than 2% 
as the chosen II,,, in VEGAS decreases and the number of grid points for Eqs. (2) 
and (3) increases. Hence, the results for the PY model are expected to be correct for 
that model within about 2%. If we consider the VW results to represent estimates of 
results which would be obtained using Monte Carlo g(r)% directly, the expected error 
of the VW values in Table III is certainly less than 5% and probably about 2-3%. 
However, we have not checked for possible systematic discrepancies between g,,(r) 
and the Monte Carlo results which might alter this conclusion. 

The results for the bounds on drag coefficients are presented in Table III and plots 
of normalized bounds on permeability are presented in Figs. 3 and 4. For 
comparison, the empirical correlation due to Kozeny and Carman 

c KC 2 lOv/(l - q)” (51) 

and the theoretical (effective medium) estimate of permeability due to Brinkman 

Prager’s bound 

Do I’S bound 

I 
Low Density Expansion ‘.,. 1~ 

9 ‘k’ ‘., o 

(52) 

FIG. 3. Comparison of Prager’s bound (boxes and solid line) and Doi’s bound (circles and dot-dash 
line) for the normalized permeability k/R’ for random aggregates of spheres using the Verlet-Weis semi- 
empirical formula for g(r). This plot illustrates the behavior at asymptotically low values of packing 
fraction n. The exact asymptotic result (53) is shown with a dashed line. 
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Do 1’s bound 

Packrng Fraction n 

FIG. 4. Comparison of Prager’s bound (circles, box, and solid line) and Doi’s bound (triangles and 
dot-dash line) for the normalized permeability k/R’ for random aggregates of spheres. This plot 
illustrates the behavior at large values of packing fraction q. The values at circles and triangles were 
computed using the Verlet-Weis semi-empirical formula for g(r). The value for the box point at q = 0.64 
was computed using Finney’s empirical radial distribution function for a laboratory packing of spheres 
[ 13,27 1. The Kozeny-Carman empirical relation (5 1) is shown with a dashed line. 

is also presented [25]. The asymptotic estimate for small values of q which was 
obtained in the work of Childress [3], Howells [4], and Hinch [5] is given by 

-q In q + 16.5~ + ... (53) 

and is plotted in Fig. 3. The experimental values for aggregates of spheres are known 
not to differ much from the Kozeny-Carman empirical correlation [26]. 

Various features of the results in Table III require discussion. First, note that Doi’s 
bound is better than Prager’s bound for packing fractions less than about 10% and 
vice versa for packing fractions greater than 10%. Next, note that, for either choice 
of radial distribution function, both lower bounds on the drag coefficients C increase 
monotonically up to v = 0.49. For q > 0.49, neither radial distribution function is 
reliable. For example, the Percus-Yevick radial distribution function is known to 
have (unphysical) negative values in some regions for higher values of q. Attempts to 
compute the bounds for higher values of q have been made but we found the results 
to be of no use. The computed “bounds” are not necessarily monotonic in the region 
0.49 < q < 0.64 and were observed to be negative for certain values of n, again 
indicating the unrealistic nature of these radial distribution functions where 
extrapolated outside their accepted region of validity. Since the case of 
q = vRcp = 0.64 is of special interest-corresponding to the random aggregate of 
spheres most likely to simulate realistic granular materials-we have obtained the 
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actual values for g(r) measured for a laboratory sphere packing from Finney [27] 
and used this histogram to calculate the final value of C, in Table III. [We also did 
the same analysis using the g(r) obtained from Bennett’s computer-generated sphere 
packing [ 121; however, the resulting bound (C, = 0.54) for q = 0.62 is so poor that 
we choose not to quote it in Table III.] At random close packing, the radial 
distribution function has a delta function singularity at r = (T which has been 
integrated analytically in the Appendix. Since the contributions 61,” and 6Z,, turn out 
to be elliptic integrals and since Doi’s bound is so much worse than Prager’s for large 
q, we have chosen not to evaluate C, for q = 0.64. 

We expect the Verlet-Weis approximation for g(r) to be more accurate than the 
Percus-Yevick approximation for the larger values of q. Nevertheless, we find that 
the results for the variational bounds do not depend strongly on which of these two 
choices we make. 

Figure 3 shows that Doi’s bound approaches the correct asymptotic limit as q -+ 0 
while Prager’s bound does not. Figure 4 shows that Prager’s bound is closer to 
observed values of permeability than Doi’s bound is for larger values of q. However, 
even Prager’s bound differs from measured values by a factor of 5 at q - 0.40 and by 
more than an order of magnitude at ?Z = 0.64. The results are disappointing from this 
point of view. On the other hand, Prager [9] has also published variational bounds 
depending on three-point correlation functions which will necessarily be better 
estimates of the empirical values than those obtained here using only two-point 
correlation functions. The present work may therefore be viewed as an essential prere- 
quisite to the evaluation of these are more complicated variational bounds. 

5. SUMMARY AND CONCLUSIONS 

In this paper, we have presented the numerical methods required to evaluate the 
variational bounds derived by Prager [9] and Doi [lo] for fluid permeability in the 
case of random aggregates of spheres. We find that Doi’s bounds are close to the 
exact results for small packing fractions but that Prager’s bounds are superior to 
Doi’s for large packing fractions. The results for both bounds are disappointingly far 
from the experimental values at the larger packing fractions. This quantitative failure 
of the bounds may be due to the restriction to two-point correlation functions or it 
may be more general. Presumably bounds using three-point correlation functions 
(such as those of Prager [9]) will provide improved estimates of the permeability for 
higher values of q. However, three-point (or higher multi-point) correlation functions 
are not as yet known with nearly as much accuracy as the two-point correlation 
functions [29]. Detailed calculations using bounds with three-point correlation 
functions must for now remain a task for future research. 
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APPENDIX 

For aggregates of spheres in the random-close-packing limit (nRcP v 0.64). the 
radial distribution function exhibits a new feature not present for smaller values of 
packing fraction. Bennett (121 has pointed out the existence of a delta function 
singularity in g(r) located at r = u, the diameter of the spheres. This delta function 
arises because the cumulative radial distribution function 

G(r) = 47cp f g(A) A2 dA 
-0 

(Al) 

has a step discontinuity at r = u since G(r) = 0 for r < o and G(o) # 0. In fact, G(c) 
is just the coordination number (the average number of spheres touching each sphere) 
in the random-close-packing limit. It follows that g(r) can be written as 

g(r) = G(a) z 6(r - a) + continuous part. 
47x7 p 642) 

The value of G(a) is generally thought to be G(u) = 6 for random close packing in 
three dimensions [ 12,281 based on stability arguments. Furthermore, G(u) = 6 is 
consistent [27] with Finney’s experimental data [ 131. We will assume G(u) = 6 
exactly in this paper. 

The delta function contribution to the integrals (21), (24). and (27) can be 
evaluated analytically. It is also easy to see that the integration follows nearly the 
same lines as those presented in Section 3 for the well-stirred approximation. The 
principal difference in the analysis for I,,([) is that, instead of inserting the 
appropriate volume d,,,(r) of spherical segments for the region of intersection in 
Fig. 1, we require a surface area of intersection where the spherical surface of radius 
2R intersects the volume of the sphere of radius R. The surface area of a spherical 
segment is 2nR,h so we find easily that the contribution to I,.,(c) from the delta 
function in g(r) is 

dr r[R’ - (r - C)‘] e,,(r) for 0<[<4R (A3) 

where 

e,,,(r) = 4nRh,(r) R<r<3R 

=o otherwise 
(A4) 
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and h,(r) is given by (38). Equation (A3) can be integrated to yield 

(A5) 

+ + (r - g5 
I 

min([+R.3R) 

marti-R.R) 

The contributions to IJ[) and I,,([) arise from the circular intersections of two 
spherical surfaces and are given by 

dr r[R * - (r - [)‘I e,,(r) for 0<[(4R 646) 

and 

SZ,,([) = z!“‘+’ dr t-e,,(r) 
JRPC S-R 

for 0,<[<4R 647) 

where 

e,,(r) = 5 (9R* - r*)“* (r* - R*)‘/* R,<r<3R 
(‘48) 

= 0 otherwise. 

Both expressions (A6) and (A7) reduce to elliptic integrals. 

Note added in proof. After this paper was accepted for publication, I learned of some relevant work 
which deserves mention. In his dissertation, Torquato discusses a different numerical method for 
calculating the correlation functions and then applies his results to the calculation of Prager’s bounds on 
permeability. The results obtained are comparable to the results presented here. This work is being 
published in a series of papers by Torquato and Stell in J. C/rem. Phq’s. 
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